Skip to content

AI/ML Model Types & Use Cases Guide


1. Regression / Prediction

Purpose: Predict continuous numerical values.

Use Cases:

  • House price prediction
  • Stock market forecasting
  • Weather prediction
  • Sales forecasting

Models: Linear Regression, Polynomial Regression, Decision Trees, Neural Networks

Libraries/Frameworks:

  • Python: scikit-learn, statsmodels, PyTorch, TensorFlow
  • Java: Weka, Deeplearning4j, Smile, Encog
  • JavaScript: TensorFlow.js, brain.js, ml.js

2. Classification

Purpose: Predict discrete categories.

Use Cases:

  • Spam detection
  • Sentiment analysis
  • Disease diagnosis
  • Fraud detection

Models: Logistic Regression, Random Forest, SVM, Neural Networks, Transformers

Libraries/Frameworks:

  • Python: scikit-learn, XGBoost, PyTorch, HuggingFace Transformers
  • Java: Weka, Deeplearning4j, Smile
  • JavaScript: TensorFlow.js, brain.js, ml5.js

3. Clustering / Unsupervised Learning

Purpose: Find patterns or groupings without labeled outputs.

Use Cases:

  • Customer segmentation
  • Anomaly detection
  • Document clustering

Models: K-Means, DBSCAN, Hierarchical Clustering, Autoencoders

Libraries/Frameworks:

  • Python: scikit-learn, PyTorch, TensorFlow
  • Java: Weka, Smile
  • JavaScript: ml.js, clustering.js, TensorFlow.js

4. Natural Language Processing (NLP)

Purpose: Understand and generate text.

Use Cases:

  • Chatbots and conversational AI
  • Q&A systems
  • Text summarization and translation
  • Sentiment analysis

Models: Bag-of-Words, RNN/LSTM, Transformers (BERT, GPT, T5), RAG

Libraries/Frameworks:

  • Python: HuggingFace Transformers, spaCy, NLTK, SentenceTransformers, LangChain
  • Java: DL4J + ND4J, Stanford NLP, Apache OpenNLP
  • JavaScript: TensorFlow.js, HuggingFace Transformers.js, compromise

5. Computer Vision

Purpose: Process and understand images/videos.

Use Cases:

  • Object detection (self-driving cars)
  • Image classification (medical images)
  • Image segmentation
  • Face recognition

Models: CNNs, YOLO, Vision Transformers

Libraries/Frameworks:

  • Python: PyTorch, TensorFlow/Keras, OpenCV, Detectron2
  • Java: Deeplearning4j, OpenCV Java, BoofCV
  • JavaScript: TensorFlow.js, ml5.js, opencv.js

6. Reinforcement Learning (RL)

Purpose: Learn by interacting with an environment.

Use Cases:

  • Game AI (chess, Go)
  • Robotics
  • Autonomous driving
  • Resource optimization

Models: Q-Learning, DQN, Policy Gradient, Actor-Critic

Libraries/Frameworks:

  • Python: Stable-Baselines3, OpenAI Gym, RLlib, PyTorch, TensorFlow
  • Java: RL4J (part of Deeplearning4j)
  • JavaScript: reinforce-js, TensorFlow.js (custom RL)

7. Generative Models / Advanced AI

Purpose: Generate new data, images, or text.

Use Cases:

  • Text generation
  • Image/audio generation
  • Content creation

Models: GANs, VAEs, Transformers, RAG

Libraries/Frameworks:

  • Python: PyTorch, TensorFlow, HuggingFace Transformers, diffusers
  • Java: Deeplearning4j (GANs, autoencoders), Smile
  • JavaScript: TensorFlow.js, ml5.js

8. Rule of Thumb

Problem TypeRecommended Model(s)
Predict numbersLinear Regression, Neural Networks
Predict categoriesLogistic Regression, Random Forest, BERT
Unsupervised patternsK-Means, Autoencoders
Text understanding/generationLSTM, Transformers, RAG
Image recognitionCNNs, ViTs
Decision making / controlRL (DQN, PPO)
Knowledge-based Q&ARAG, Retrieval + Transformer
Generative contentGANs, VAEs, Transformers